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Abstract

In this paper\ the complete static response of two joined dissimilar half!spaces due to an arbitrary interior
point load is derived[ By means of a method of displacement potentials and integral transforms\ a dual
format of the solution in the form of a Hankel integral representation and algebraic closed!form expressions
is presented[ As illustrations\ its analytical degeneration to benchmark solutions for a homogeneous medium
as well as its variation under general geometric and material conditions are shown[ The importance of the
dual format of the bi!material solution in connection with the method of asymptotic decomposition to the
development of a rigorous treatment of its dynamic counterpart is also demonstrated[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

The static response of a three!dimensional solid to a point load in its interior such as those given
by the solutions of Kelvin "Love\ 0833# and Boussinesq "0774# is fundamental in many applications[
Upon integration\ such Green|s functions can be used to assess deformations and the stress changes
in a soil medium due to distributed loads arising from construction and foundation designs[ By
means of appropriate integral formulations\ they are also the basis for the implementation of
boundary element and integral equation methods[ For rigorous solutions to elastodynamic prob!
lems\ the static fundamental solutions remain equally important as a tool to deal with the singular
behavior of dynamic Green|s functions[

For an isotropic\ bi!material full!space\ Rongved "0844# _rst derived the static fundamental
solutions by means of Papkovitch functions[ His work was followed by the solution of Vijayakumar
and Cormack "0876# who employed matrix representations of displacements and stresses[ Pan and
Chou "0868# and Konguchi et al[ "0889# extended the approach of Mindlin "0825# for a
homogeneous isotropic half!space to treat the case of a transversely anisotropic two!phase material[

� Author to whom correspondence should be addressed[ Fax ] 2923816206[
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Fig[ 0[ Bi!material full!space[

Recently\ Yu and Sanday "0880# have developed the Galerkin vectors for a number of nuclei of
strain in an isotropic bi!material full!space[ None of these solutions\ however\ is in the form of
integral representations[ As demonstrated in Pak "0876#\ Pak and Ji "0880# and Guzina and Pak
"0885#\ the integral representations of the appropriate static fundamental solutions are necessary
in the extraction of the singular behavior of various elastodynamic Green|s functions derived by
integral transforms[ The availability of alternative representations of such singular solutions is
also essential for the derivation of di}erent forms of the boundary integral formulation "Sladek
and Sladek\ 0880 ^ Tanaka et al[\ 0883#[ By means of the method of asymptotic decomposition
"Pak\ 0876#\ for instance\ it was shown in Guzina "0885# that both the integral representation of
static fundamental solutions for a bi!material full!space and their closed!form representation are
needed for the singularity treatment of elastodynamic Green|s functions for a multilayered half!
space with multiple bi!material interfaces[

In what follows\ the method of integral transforms and Fourier decompositions is applied in the
context of displacement potentials to the point!load problem for an elastic bi!material full!space[
Apart from providing new results in the form of integral representations of the displacement as
well as stress Green|s functions\ the solution is also shown to be reducible to familiar closed!
form expressions found in other treatments[ The formulation and numerical implementation are
illustrated by a comparison of their degenerate forms to some benchmark solutions\ of which the
static Green|s function for a homogeneous half!space is an example[ The special relevance of the
dual format of the bi!material solution is demonstrated in the treatment of its dynamic counterpart
for which closed!form solution is not available[

1[ Formulation of the problem

In this paper\ the physical domain of interest is taken to be composed of two dissimilar isotropic
elastic half!spaces which are fully bonded across the plane z � 9 "see Fig[ 0#[ The Lame�|s constants
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of the upper half!space "referred to as Region I# will be denoted as l0 and m0\ and the ones of the
lower half!space as l1 and m1[ For the derivation of the elastostatic response of a bi!material full!
space to interior point loads\ the displacement equilibrium equations with zero body!force _eld
can be expressed as

"lb¦1mb#99 = u−mb9×9×u � 9\ "0#

where u denotes the displacement vector\ and lb and mb are the piecewise constant Lame�|s moduli
given by

lb � 6
l0\ z ³ 9

l1\ z × 97\ mb � 6
m0\ z ³ 9

m1\ z × 97[ "1#

Although the present formulation rules out body forces\ the action of an arbitrarily distributed
source across the plane z � s can be represented as a set of prescribed stress discontinuities across
the corresponding planar region "see Fig[ 0#[ Without loss of generality\ it is assumed that the
loaded plane is located in the lower half!space\ i[e[ s × 9[ In the treatment of this class of problems\
it is convenient to view the lower half!space as being composed of Region II "9 ³ z ³ s# and
Region III "z × s# as indicated in Fig[ 0\ and to represent the distributed body!force _eld as a
general discontinuity of stresses across z � s "see Pak\ 0876# in cylindrical coordinates "r\ u\ z#\ i[e[

tzr"r\ u\ s−#−tzr"r\ u\ s¦# � P"r\ u#\

tzu"r\ u\ s−#−tzu"r\ u\ s¦# � Q"r\ u#\

tzz"r\ u\ s−#−tzz"r\ u\ s¦# � R"r\ u#\ "2#

while requiring the displacements to be continuous everywhere[ As a specialization of the Somi!
glianaÐGalerkin solution to the equations of equilibrium "0#\ one may represent the displacement
_eld in either material domain as

1mbu � 1"0−nb#91"Fez#−99 = "Fez#¦19×"Cez#\ "3#

where nb is the relevant Poisson|s ratio of the medium\ and F and C are the corresponding
displacement potentials which satisfy the governing equations

93F"r\ u\ z# � 9\ 91C"r\ u\ z# � 9\ "4#

"Muki\ 0859#[ By virtue of the completeness of the angular eigenfunctions "eimu#¦�
m� −�\ −p ³ u ¾ p

with respect to the class of solutions under consideration\ one may express

u"r\ u\ z# � s
�

m� −�

um"r\ z# eimu\

F"r\ u\ z# � s
�

m� −�

Fm"r\ z# eimu\

C"r\ u\ z# � s
�

m� −�

Cm"r\ z# eimu\
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P"r\ u# � s
�

m� −�

Pm"r# eimu\ etc[ "5#

Substitution of "5# into "4# yields the governing equations for the Fourier components of dis!
placement potentials

0
11

1r1
¦

0
r

1

1r
−

m1

r1
¦

11

1z11
1

Fm � 9\

0
11

1r1
¦

0
r

1

1r
−

m1

r1
¦

11

1z11Cm � 9\ "6#

where −� ³ m ³ �[ By means of the mth order Hankel transform with respect to the radial
coordinate

f½m"j# � g
�

9

f"r#rJm"rj# dr\ "7#

whose inverse may be written as

f"r# � g
�

9

f½m"j#jJm"rj# dj\ "8#

"6# can be reduced to

d3

dz3
F	m

m−1j1 d1

dz1
F	m

m¦j3F	m
m � 9\

d1

dz1
C	m

m−j1C	m
m � 9[ "09#

Consistent with the regularity conditions at in_nity\ the relevant solutions of "09# can be written
as

F	m
m"j\ z# � "C I

m¦D I
mz# ejz\

C	m
m"j\ z# � F I

m ejz\ "00#

in Region I "−� ³ z ³ 9#\

F	m
m"j\ z# � "AII

m¦B II
mz# e−jz¦"C II

m¦D II
mz# ejz\

C	m
m"j\ z# � E II

m e−jz¦F II
m ejz\ "01#

in Region II "9 ³ z ³ s#\ and

F	m
m"j\ z# � "AIII

m ¦B III
m z# e−jz\

C	m
m"j\ z# � E III

m e−jz\ "02#
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in Region III "s ³ z ³ �#[ In the above\ C I
m"j#\ D I

m"j#\ [ [ [ \ E III
m "j# are the integration coe.cients

to be determined from suitable boundary conditions[ With the aid of the transformed displacement!
potential relations

1mbu½
m
zm

� "0−1nb#
d1

dz1
F	m

m−1"0−nb#j1F	m
m\

1mb"u½m¦0
rm ¦iu½m¦0

um
# � j 0

d
dz

F	m
m¦1iC	m

m1\

1mb"u½m−0
rm −iu½m−0

um
# � −j 0

d
dz

F	m
m−1iC	m

m1\ "03#

and the stressÐdisplacement relationship

t½m
zzm

�
lbj

1
""u½m¦0

rm ¦iu½m¦0
um

#−"u½m−0
rm −iu½m−0

um
##¦"lb¦1mb#

d
dz

"u½m
zm

#\

t½m¦0
zrm ¦it½m¦0

zum � mb

d
dz

"u½m¦0
rm ¦iu½m¦0

um
#−mbju½m

zm
\

t½m−0
zrm −itm−0

zum
� mb

d
dz

"u½m−0
rm −iu½m−0

um
#¦mbju½m

zm
\ "04#

t½m
rrm¦1mb 0

urm

r
¦im
½ mum

r 1
m

�
"lb¦1mb#j

1
""u½m¦0

rm ¦iu½m¦0
um

#−"u½m−0
rm −iu½m−0

um
##¦lb

d
dz

"u½m
zm

#\

t½m
uum

−1mb 0
urm

r
¦im
½ uum

r 1
m

�
lbj

1
""u½m¦0

rm ¦iu½m¦0
um

#−"u½m−0
rm −iu½m−0

um
##¦lb

d
dz

"u½m
zm

#\

t½m
rum

¦1mb 0
uum

r
−im
½ urm

r 1
m

�
−imbj

1
""u½m¦0

rm ¦iu½m¦0
um

#¦"u½m−0
rm −iu½m−0

um
##\ "05#

the transformed Fourier components of the displacement and stress _elds may be expressed in
terms of C I

m\ D I
m\ [ [ [ \ E III

m appropriate to the boundary value problem of interest[

2[ Solution for a distributed buried source

By means of "00#Ð"05#\ the interfacial conditions "2# together with the continuity of displacements
across the plane z � s and the continuity of displacements and tractions between the two half!
spaces across the plane z � 9 provide twelve equations required for the solution of the twelve
unknown coe.cients C I

m\ D I
m\ [ [ [ \ E III

m [ Substitution of the result into eqn "03# yields the trans!
formed Fourier components of the displacement _eld in the form of
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u½m
zm

� V0"j\ z ^ s#
Xm−Ym

1m1

¦V1"j\ z ^ s#
Zm

m1

\

u½m¦0
rm ¦iu½m¦0

um
� −g0"j\ z ^ s#

Xm−Ym

1m1

¦g1"j\ z ^ s#
Xm¦Ym

1m1

−g2"j\ z ^ s#
Zm

m1

\

u½m−0
rm −iu½m−0

um
� g0"j\ z ^ s#

Xm−Ym

1m1

¦g1"j\ z ^ s#
Xm¦Ym

1m1

¦g2"j\ z ^ s#
Zm

m1

\ "06#

where

Zm"j# � R	m
m"j#\

Xm"j# � P	m−0
m "j#−iQ	m−0

m "j#\

Ym"j# � P	m¦0
m "j#¦iQ	m¦0

m "j#\ "07#

while the auxiliary functions V0\ [ [ [ \ g2 are de_ned as follows ]
For Region I\

V0 �
m1 e−jd0

1jM0M1

"j"zM1−sM0#−"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0###\

V1 �
−m1 e−jd0

1jM0M1

"j"zM1−sM0#−"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0###\

g0 �
m1 e−jd0

1jM0M1

"j"zM1−sM0#¦"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0###\

g1 �
m1 e−jd0

j"m0¦m1#
\

g2 �
−m1 e−jd0

1jM0M1

"j"zM1−sM0#¦"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0###\ "08#

where

d0 � =z−s=\

d1 � z¦s\ "19#

and

M0 � m0¦"2−3n0#m1\

M1 � m1¦"2−3n1#m0[ "10#

For Regions II and III\

V0 �
e−jd0

7j"0−n1#M0M1

"jd2M0M1#
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¦
e−jd1

7j"0−n1#M0M1

"1j1"m0−m1#M0zs−j"m0−m1#"2−3n1#M0d2

−3m1"0−n1#"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0###\

V1 �
e−jd0

7j"0−n1#M0M1

""jd0¦2−3n1#M0M1#

¦
e−jd1

7j"0−n1#M0M1

"−1j1"m0−m1#M0zs−j"m0−m1#"2−3n1#M0d1

−"m1
0"2−3n1#1−m1

1"2−3n0#"4−01n1¦7n1
1#¦m0m1"1−3n0#"2−3n1#"0−1n1###\

g0 �
e−jd0

7j"0−n1#M0M1

""−jd0¦2−3n1#M0M1#

¦
e−jd1

7j"0−n1#M0M1

"−1j1"m0−m1#M0zs¦j"m0−m1#"2−3n1#M0d1

−"m1
0"2−3n1#1−m1

1"2−3n0#"4−01n1¦7n1
1#¦m0m1"1−3n0#"2−3n1#"0−1n1###\

g1 �
e−jd0

1j
−

e−jd1

1j"m0¦m1#
"m0−m1#\

g2 �
e−jd0

7j"0−n1#M0M1

"−jd2M0M1#

¦
e−jd1

7j"0−n1#M0M1

"1j1"m0−m1#M0zs¦j"m0−m1#"2−3n1#M0d2 "11#

−3m1"0−n1#"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0###\

where

d2 � z−s[ "12#

By means of the stressÐdisplacement relationship "04#Ð"05# and the displacement solution "06#\
the transformed stresses may be expressed as

t½m
zzm

� 6"lb¦1mb#
dV0

dz
−lbjg07

Xm−Ym

1m1

¦6"lb¦1mb#
dV1

dz
−lbjg27

Zm

m1

\

t½m¦0
zrm ¦it½m¦0

zum
� −mb 6

dg0

dz
¦jV07

Xm−Ym

1m1

¦mb 6
dg1

dz 7
Xm¦Ym

1m1

−mb 6
dg2

dz
¦jV17

Zm

m1

\

t½m−0
zrm −itm−0

zum
� mb 6

dg0

dz
¦jV07

Xm−Ym

1m1

¦mb 6
dg1

dz 7
Xm¦Ym

1m1

¦mb 6
dg2

dz
¦jV17

Zm

m1

\ "13#

and
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t½m
rrm¦1mb 0

urm

r
¦ im
½ uum

r 1
m

� 6lb

dV0

dz
−"lb¦1mb#jg07

Xm−Ym

1m1

¦6lb

dV1

dz
−"lb¦1mb#jg27

Zm

m1

\

t½m
uum

−1mb 0
urm

r
¦ im
½ uum

r 1
m

� lb 6
dV0

dz
−jg07

Xm−Ym

1m1

¦lb 6
dV1

dz
−jg27

Zm

m1

\

t½m
rum

¦1mb 0
uum

r
−im
½ urm

r 1
m

� −imb"jg1#
Xm¦Ym

1m1

[ "14#

In the above\ the derivatives of the in~uence functions may be expressed as

dV0

dz
�

m1 e−jd0

1M0M1

"j"zM1−sM0#−"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0#−M1##\

dV1

dz
�

−m1 e−jd0

1M0M1

"j"zM1−sM0#−"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0#−M1##\

dg0

dz
�

m1 e−jd0

1M0M1

"j"zM1−sM0#¦"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0#¦M1##\

dg1

dz
�

m1 e−jd0

m0¦m1

\

dg2

dz
�

−m1 e−jd0

1M0M1

"j"zM1−sM0#−"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0#¦M1##\ "15#

in Region I\ and

dV0

dz
�

e−jd0

7"0−n1#M0M1

"−"jd0−0#M0M1#

−
e−jd1

7"0−n1#M0M1

""m0−m1#M0"1j1zs−j"z"2−3n1#−s"0−3n1###

¦"m1
0"2−3n1#¦m1

1"2−3n0#"0−7n1¦7n1
1#−1m0m1"0−1n0#"2−3n1#"0−1n1###\

dV1

dz
�

e−jd0

7"0−n1#M0M1

"−"jd0¦1−3n1# sign"z−s#M0M1#

−
e−jd1

7"0−n1#M0M1

""m0−m1#M0"−1j1zs−j"z"2−3n1#¦s"0−3n1###
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−"1m1
0"2−3n1#"0−1n1#−1m1

1"2−3n0#"0−1n1#1−3m0m1n1"2−3n1#"0−1n0###\

dg0

dz
�

e−jd0

7"0−n1#M0M1

""jd0−3¦3n1# sign"z−s#M0M1#

−
e−jd1

7"0−n1#M0M1

""m0−m1#M0"−1j1zs¦j"z"2−3n1#¦s"4−3n1###

−3"0−n1#"m1
0"2−3n1#−m1

1"2−3n0#"1−1n1#¦m0m1"2−3n1#"0−1n0###\

dg1

dz
� −

e−jd0

1
sign"z−s#¦

e−jd1

1"m0¦m1#
"m0−m1#\

dg2

dz
�

e−jd0

7"0−n1#M0M1

""jd0−0#M0M1#

−
e−jd1

7"0−n1#M0M1

""m0−m1#M0"1j1zs¦j"z"2−3n1#−s"4−3n1###

−"m1
0"2−3n1#−m1

1"2−3n0#"6−05n1¦7n1
1#¦1m0m1"0−1n0#"2−3n1#"2−1n1###\ "16#

in Regions II and III[

3[ Loading coef_cients for concentrated point loads

For horizontal and vertical point loads\ one may de_ne the body!force _elds as

fh"r\ u\ z# � Fh

d"r#
1pr

d"z−s#eh\

fv"r\ u\ z# � Fv

d"r#
1pr

d"z−s#ez[ "17#

In "17#\ d is the one!dimensional Dirac delta function ^ eh is the unit horizontal vector in the u � u9

direction given by

eh � er cos"u−u9#−eu sin"u−u9#\ "18#

"see also Fig[ 1# ^ er\ eu and ez are the unit vectors in the radial\ angular and vertical directions\
respectively ^ and Fh and Fv are the force magnitudes[ By virtue of the angular expansions of
the stress discontinuities across the plane z � s ðsee "2#Ł and the orthogonality of the angular
eigenfunctions "eimu#�

m� −�\ one _nds

P20"r# � Fh e3iu9
d"r#
3pr

\ Pm"r# � 9\ m�20\

Q20"r# �2iFh e3iu9
d"r#
3pr

\ Qm"r# � 9\ m�20\
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Fig[ 1[ Con_guration of the point!loads[

R9"r# �Fv

d"r#
1pr

\ Rm"r# � 9\ m� 9\ "29#

for the point!loads in "17#[ They\ in turn\ yield the transformed loading coe.cients Xm\ Ym and Zm

as

X0"j# �
Fh

1p
e−iu9\ Xm"j# � 9\ m � 0\

Y−0"j# �
Fh

1p
eiu9\ Ym"j# � 9\ m � −0\

Z9"r# �
Fv

1p
\ Zm"j# � 9\ m � 9[ "20#

4[ Displacement and stress Green|s functions

Upon inverting the transformed expressions "06#\ the displacement point!load Green|s functions
for the joined half!spaces may be written in cylindrical coordinates as

u¼�r"r\ u\ z ^ s# �
0

3pm1 6−1Fv g
�

9

"g2#jJ0"rj# dj¦Fh cos"u−u9#

×0g
�

9

"g1¦g0#jJ9"rj# dj¦g
�

9

"g1−g0#jJ1"rj# dj17\

u¼�u"r\ u\ z ^ s# �
0

3pm1 6−Fh sin"u−u9# 0g
�

9

"g1¦g0#jJ9"rj# dj−g
�

9

"g1−g0#jJ1"rj# dj17\
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u¼�z"r\ u\ z ^ s# �
0

1pm1 6Fv g
�

9

"V1#jJ9"rj# dj¦Fh cos"u−u9# g
�

9

"V0#jJ0"rj# dj7[ "21#

In the above\ the symbol {{u¼|| denotes the displacement Green|s functions\ and the superscript {{�||
is used to designate the direction of the point!load corresponding to the speci_cations in "17# and
"18#[ Analogously\ expressions "13# and "14# can be used to obtain the generalized stress Green|s
functions in the form of

t¼�zz"r\ u\ z ^ s# �
0

1pm1 6Fv g
�

9 0"lb¦1mb#
dV1

dz
−lbjg21 jJ9"rj# dj

¦Fh cos"u−u9# g
�

9 0"lb¦1mb#
dV0

dz
−lbjg01 jJ0"rj# dj7\

t¼�zr"r\ u\ z ^ s# �
mb

3pm1 6−1Fv g
�

9 0
dg2

dz
¦jV11 jJ0"rj# dj¦Fh cos"u−u9#

×0g
�

9 0
dg1

dz
¦

dg0

dz
¦jV01 jJ9"rj# dj¦g

�

9 0
dg1

dz
−

dg0

dz
−jV01 jJ1"rj# dj17\

t¼�zu"r\ u\ z ^ s# �
mb

3pm1 6−Fh sin"u−u9#

×0g
�

9 0
dg1

dz
¦

dg0

dz
¦jV01 jJ9"rj# dj−g

�

9 0
dg1

dz
−

dg0

dz
−jV01 jJ1"rj# dj7\

"22#

t¼�rr"r\u\ z ^ s#¦
1mb

r
"u¼�r¦i"u¼�u0

eiu−u¼�u−0
e−iu## �

0
1pm1

×6Fv g
�

9 0lb

dV1

dz
−"lb¦1mb#jg21jJ9"rj# dj

¦Fh cos"u−u9# g
�

9 0lb

dV0

dz
−"lb¦1mb#jg01jJ0"rj# dj7\

t¼�uu"r\u\ z ^ s#−
1mb

r
"u¼�r¦i"u¼�u0

eiu−u¼�u−0
e−iu## �

lb

1pm1

×6Fv g
�

9 0
dV1

dz
−jg21jJ9"rj# dj¦Fh cos"u−u9# g

�

9 0
dV0

dz
−jg01jJ0"rj# dj7\

t¼�ru"r\u\ z ^ s#¦
1mb

r
"u¼�u−i"u¼�r0 eiu−u¼�r−0

e−iu## �
mb

1pm1 6Fh sin"u−u9# g
�

9

"jg1#jJ0"rj# dj7[ "23#

In order to evaluate the foregoing Green|s functions in closed form\ it is useful to denote
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Oi"n\ l# � g
�

9

Vij
lJn"rj# dj\

O?i"n# � g
�

9

dVi

dz
jJn"rj# dj\ "i � 0\ 1#

Gj"n\ l# � g
�

9

gjj
lJn"rj# dj\

G?j"n# � g
�

9

dgj

dz
jJn"rj# dj\ " j � 0\ 1\ 2# "24#

where l � 0\ 1\ n � 9\ 0\ 1 and

Tk"n\ 0# 0 T"n\ l\ r\ dk# � g
�

9

e−jdkjlJn"rj# dj\ "k � 0\ 1# "25#

with l � 0\ 1\ 2 and dk given by "19#[ Integrals in "25# are expressible in terms of closed!form
algebraic functions "Erdelyi\ 0843# and may be written as

Tk"n\ l# �

F

j

J

f

"−0#l

rn

1l

1dl
k 6

"zd1
k¦r1−dk#n

zd1
k¦r1 7\ r × 9

dn9l;d
−"l¦0#
k \ r � 9

J

f

F

j

\ "26#

where dn9 is the Kronecker delta and n × −"l¦0#[ By virtue of the de_nitions in "08# and "15#\
the improper integrals in "24# may be expressed in terms of Tk"n\ l# in Region I "z ³ 9# as

O0"n\ l# �
m1

1M0M1

""zM1−sM0#T0"n\ l#

−"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0##T0"n\ l−0##\

O1"n\ l# �
−m1

1M0M1

""zM1−sM0#T0"n\ l#

−"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0##T0"n\ l−0##\

G0"n\ l# �
m1

1M0M1

""zM1−sM0#T0"n\ l#

¦"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0##T0"n\ l−0##\

G1"n\ l# �
m1

m0¦m1

"T0"n\ l−0##\

G2"n\ l# �
−m1

1M0M1

""zM1−sM0#T0"n\ l#
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¦"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0##T0"n\ l−0##\ "27#

and

O?0"n# �
m1

1M0M1

""zM1−sM0#T0"n\ 1#

−"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0#−M1#T0"n\ 0##\

O?1"n# �
−m1

1M0M1

""zM1−sM0#T0"n\ 1#

−"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0#−M1#T0"n\ 0##\

G?0"n# �
m1

1M0M1

""zM1−sM0#T0"n\ 1#

¦"m0"1−1n0#"2−3n1#¦m1"1−1n1#"2−3n0#¦M1#T0"n\ 0##\

G?1"n# �
m1

m0¦m1

"T0"n\ 0##

G?2"n# �
−m1

1M0M1

""zM1−sM0#T0"n\ 1#

¦"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0#¦M1#T0"n\ 0##\ "28#

where M0\ M1 are given by "10#[ Likewise\ the closed!form expressions for O0\ O1\ [ [ [ \ G?2 in Regions
II and III "z × 9# can be derived from "11# and "16# in the form of

O0"n\ l# �
0

7"0−n1#M0M1

"M0M1d2T0"n\ l#

¦1"m0−m1#M0zsT1"n\ l¦0#−"m0−m1#"2−3n1#M0d2T1"n\ l#

−3m1"0−n1#"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0##T1"n\ l−0##\

O1"n\ l# �
0

7"0−n1#M0M1

"M0M1d0T0"n\ l#¦"2−3n1#M0M1T0"n\ l−0#

−1"m0−m1#M0zsT1"n\ l¦0#−"m0−m1#"2−3n1#M0d1T1"n\ l#

−"m1
0"2−3n1#1−m1

1"2−3n0#"4−01n1¦7n1
1#

¦m0m1"1−3n0#"2−3n1#"0−1n1##T1"n\ l−0##\

G0"n\ l# �
0

7"0−n1#M0M1

"−M0M1d0T0"n\ l#¦"2−3n1#M0M1T0"n\ l−0#

−1"m0−m1#M0zsT1"n\ l¦0#¦"m0−m1#"2−3n1#M0d1T1"n\ l#

−"m1
0"2−3n1#1−m1

1"2−3n0#"4−01n1¦7n1
1#



B[B[ Guzina\ R[Y[S[ Pak : International Journal of Solids and Structures 25 "0888# 382Ð405495

¦m0m1"1−3n0#"2−3n1#"0−1n1##T1"n\ l−0##\

G1"n\ l# �
0

1"m0¦m1#
""m0¦m1#T0"n\ l−0#−"m0−m1#T1"n\ l−0##\

G2"n\ l# �
0

7"0−n1#M0M1

"−M0M1d2T0"n\ l#

¦1"m0−m1#M0zsT1"n\ l¦0#¦"m0−m1#"2−3n1#M0d2T1"n\ l#

−3m1"0−n1#"m0"0−1n0#"2−3n1#−m1"0−1n1#"2−3n0##T1"n\ l−0##\ "39#

and

O?0"n# �
0

7"0−n1#M0M1

"−M0M1d0T0"n\ 1#¦M0M1T0"n\ 0#

−"m0−m1#M0"1zsT1"n\ 2#−"z"2−3n1#−s"0−3n1##T1"n\ 1##

−"m1
0"2−3n1#¦m1

1"2−3n0#"0−7n1¦7n1
1#

−1m0m1"0−1n0#"2−3n1#"0−1n1##T1"n\ 0##\

O?1"n# �
0

7"0−n1#M0M1

"−sign"z−s#M0M1"d0T0"n\ 1#¦"1−3n1#T0"n\ 0##

¦"m0−m1#M0"1zsT1"n\ 2#¦"z"2−3n1#¦s"0−3n1##T1"n\ 1##

¦"1m1
0"2−3n1#"0−1n1#−1m1

1"2−3n0#"0−1n1#1

−3m0m1n1"2−3n1#"0−1n0##T1"n\ 0##\

G?0"n# �
0

7"0−n1#M0M1

"sign"z−s#M0M1"d0T0"n\ 1#−"3−3n1#T0"n\ 0##

¦"m0−m1#M0"1zsT1"n\ 2#−"z"2−3n1#¦s"4−3n1##T1"n\ 1##

¦3"0−n1#"m1
0"2−3n1#−m1

1"2−3n0#"1−1n1#

¦m0m1"2−3n1#"0−1n0##T1"n\ 0##\

G?1"n# �
0

1"m0¦m1#
"−sign"z−s#"m0¦m1#T0"n\ 0#¦"m0−m1#T1"n\ 0##\

G?2"n# �
0

7"0−n1#M0M1

"M0M1d0T0"n\ 1#−M0M1T0"n\ 0#

−"m0−m1#M0"1zsT1"n\ 2#¦"z"2−3n1#−s"4−3n1##T1"n\ 1##

¦"m1
0"2−3n1#−m1

1"2−3n0#"6−05n1¦7n1
1#

¦1m0m1"0−1n0#"2−3n1#"2−1n1##T1"n\ 0##\ "30#

In view of "27#Ð"30#\ the displacement and stress Green|s functions for fully bonded dissimiliar
half!spaces in "21#Ð"23# may be expressed in closed form as
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u¼�r"r\ u\ z ^ s# �
0

3pm1

"−1FvG2"0\ 0#¦Fh cos"u−u9#

×"G1"9\ 0#¦G0"9\ 0#¦G1"1\ 0#−G0"1\ 0###\

u¼�u"r\ u\ z ^ s# �
0

3pm1

"−Fh sin"u−u9#"G1"9\ 0#¦G0"9\ 0#−G1"1\ 0#¦G0"1\ 0###\

u¼�z"r\ u\ z ^ s# �
0

1pm1

"FvO1"9\ 0#¦Fh cos"u−u9#O0"0\ 0##\ "31#

t¼�zz"r\ u\ z ^ s# �
0

1pm1

"Fv""lb¦1mb#O?1"9#−lbG2"9\ 1##

¦Fh cos"u−u9#""lb¦1mb#O?0"0#−lbG0"0\ 1###\

t¼�zr"r\ u\ z ^ s# �
mb

3pm1

"−1Fv"G?2"0#¦O1"0\ 1##

¦Fh cos"u−u9#"G?1"9#¦G?0"9#¦O0"9\ 1#¦G?1"1#−G?0"1#−O0"1\ 1###\

t¼�zu"r\ u\ z ^ s# �
−mb

3pm1

"Fh sin"u−u9#"G?1"9#¦G?0"9#¦O0"9\ 1#−G?1"1#¦G?0"1#¦O0"1\ 1###\

"32#

and

t¼�rr"r\ u\ z ^ s#¦
1mb

r
"u¼�r¦i"u¼�u0

eiu−u¼�u−0
e−iu## �

0
1pm1

×"Fv"lbO?1"9#−"lb¦1mb#G2"9\ 1##¦Fh cos"u−u9#"lbO?0"0#−"lb¦1mb#G0"0\ 1###\

t¼�uu"r\ u\ z ^ s#−
1mb

r
"u¼�r¦i"u¼�u0

eiu−u¼�u−0
e−iu## �

lb

1pm1

×"Fv"O?1"9#−G2"9\ 1##¦Fh cos"u−u9#"O?0"0#−G0"0\ 1###\

t¼�ru"r\ u\ z ^ s#¦
1mb

r
"u¼�u−i"u¼�r0 eiu−u¼�r−0

e−iu## �
mb

1pm1

"Fh sin"u−u9#G1"0\ 1##[ "33#

These functions have all been coded for computational purposes[ The formulation may be com!
pleted by observing that

u¼�u−i"u¼�r0 eiu−u¼�r−0
e−iu# �

0
1pm1

"Fh sin"u−u9#"G1"1\ 0#−G0"1\ 0###\

u¼�r¦i"u¼�u0
eiu−u¼�u−0

e−iu# �
0

1pm1

"−FvG2"0\ 0#¦Fh cos"u−u9#"G1"1\ 0#−G0"1\ 0###[ "34#

It should be noted that by means of "26#\ the radial coordinate r may be factored out in front
of the expressions G0"1\ 0#\ G1"1\ 0# and G2"0\ 0# in "27# and "39#[ As a result\ the stress Green|s
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functions "33# are well!de_ned even as r : 9[ One may also observe from eqns "26#Ð"33# that some
of the point!load Green|s functions are singular as the observation point approaches the source\
i[e[

u¼�i "r\ u\ z ^ s# � O 0
0

zr1¦"z−s#11 as zr1¦"z−s#1 : 9\

t¼�ij"r\ u\ z ^ s# � O 0
0

r1¦"z−s#11 as zr1¦"z−s#1 : 9\ "35#

from some i and j[

5[ Some limiting cases

As a check of the foregoing developments\ it is useful to investigate the behavior of the functions
V0\ V1\ [ [ [ \ g2 for two limiting cases ] "i# when the modulus of the {{upper medium|| "z ³ 9# is zero\
and "ii# when the moduli of both media are equal[ As it is apparent from the physics of the problem\
such degenerate forms of the general formulation should correspond to the homogeneous half!
and full!space solutions\ respectively[

Upon setting m0 � 9\ m1 � m and n1 � n\ expressions "11# for the {{lower|| medium "z × 9# may
be written as

Vhs
0 �

0
7"0−n#j

"e−jd0 sign"z−s#d0j

¦e−jd1"−1zsj1¦"2−3n# sign"z−s#d0j¦"3−3n#"0−1n###\

Vhs
1 �

0
7"0−n#j

"e−jd0"d0j¦2−3n#¦e−jd1"1zsj1¦"2−3n#d1j¦"4−01n¦7n1###\

ghs
0 �

0
7"0−n#j

"e−jd0"−d0j¦2−3n#¦e−jd1"1zsj1−"2−3n#d1j¦"4−01n¦7n1###\

ghs
1 �

0
1j

"e−jd0¦e−jd1#\

ghs
2 �

0
7"0−n#j

"−e−jd0 sign"z−s#d0j

¦e−jd1"−1zsj1−"2−3n# sign"z−s#d0j¦"3−3n#"0−1n###\ "36#

which are identical to the solution of the homogeneous half!space problem "Saphores\ 0878#[
Analogously\ setting m0 � m1 � m and n0 � n1 � n degenerates the in~uence functions "08# and

"11# in both half!spaces "−� ³ z ³ �# to the common format

V fs
0 �

e−jd0

7"0−n#
"sign"z−s#d0#\ V fs

1 �
e−jd0

7"0−n#j
"d0j¦2−3n#\
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g fs
0 �

−e−jd0

7"0−n#j
"d0j−2¦3n#\ g fs

1 �
e−jd0

1j
\ g fs

2 �
−e−jd0

7"0−n#
"sign"z−s#d0#\ "37#

which upon substitution into "21#Ð"23# yields the Kelvin|s solution for a homogeneous full!space
"Love\ 0833#[

6[ Numerical results\ applications and discussion

To illustrate the analytical results in previous sections\ some typical Green|s functions are
presented in Figs 2Ð00 for four characteristic cases ]

Case I ] m0:m1 � 9\ n0 � 9[99\ n1 � 9[29\ "no upper half!space#\

Case II ] m0:m1 � 0\ n0 � 9[29\ n1 � 9[29\ "two equal half!spaces#\

Case III ] m0:m1 � 096\ n0 � 9[34\ n1 � 9[29\ "rigid upper half!space#\

Case IV ] m0:m1 � 2\ n0 � 9[29\ n1 � 9[29\ "stiffer upper half!space#[ "38#

In the _gures\ the Cartesian components of the displacement Green|s functions U
�i "x0\ x1\ x2\ s#
and the stress Green|s functions S
�ij"x0\ x1\ x2\ s# "i\ j � 0\ 1\ 2# are employed[ They are related to
the cylindrical components through

U
�i "x0\ x1\ x2 ^ s# � qi
ku¼�k"r\ u\ z ^ s#

S
�ij"x0\ x1\ x2 ^ s# � qi
kq

j
lt¼�kl"r\ u\ z ^ s# "49#

where k\ l � r\ u\ z and

Fig[ 2[ Displacement Green|s functions U
0
0"x ^ s#[
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Fig[ 3[ Displacement Green|s functions U
0
1"x ^ s#[

Fig[ 4[ Displacement Green|s functions U
0
2"x ^ s#[

qi
0 �

1xi

1r
\ qi

1 �
0
r

1xi

1u
\ qi

2 �
1xi

1z
[ "40#

The _rst two cases in "38# are compared to the fundamental solution for a uniform half!space
"Mindlin\ 0825# and the Kelvin|s solution for a homogeneous full!space "Love\ 0833#\ respectively[
The source point with coordinates "9\ 9\ s# is taken to be located in the {{lower|| half!space\ i[e[
x2 × 9[ To emphasize the characteristic features of the bi!material formulation\ the source is taken
to be close to the interface x2 � 9[ Results are plotted along vertical lines in the z!direction[

The displacement Green|s functions U
0
i "x ^ s# "i � 0\ 1\ 2# due to the point!load in the x0!direction
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Fig[ 5[ Stress Green|s functions S
0
00"x ^ s#[

Fig[ 6[ Stress Green|s functions S
0
11"x ^ s#[

are delineated in Figs 2Ð4[ From the display\ one may observe the full agreement of the degenerate
bi!material solutions with Mindlin|s and Kelvin|s solution[ To enhance the clarity of the plots\ the
benchmark solution for the full!space is presented only for x2 × 9[ As expected\ in the case when
m0:m1 � 096 "i[e[ the {{upper|| medium is rigid#\ the displacement Green|s functions vanish for
x2 ³ 9[ The continuity of the displacement Green|s functions across the interface x2 � 9 should
also be noted[ While the various solutions are clearly di}erent throughout the range in Fig[ 2\ the
di}erences away from the interface are much smaller when the {{secondary|| e}ects U
0

1 and U
0
2 are

considered in Figs 3 and 4[
The stress Green|s functions S
0

ij"x ^ s# "i\ j � 0\ 1\ 2# are plotted in Figs 5Ð00[ Similar to the
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Fig[ 7[ Stress Green|s functions S
0
22"x ^ s#[

Fig[ 8[ Stress Green|s functions S
0
21"x ^ s#[

displacement Green|s functions\ the stress Green|s functions S
0
2j"x ^ s# are continuous across the

interface x2 � 9[ On the other hand\ Green|s functions S
0
0j and S
0

1j for j � 0\ 1 are discontinuous
at the interface whenever m0:m1 � 0 or n0:n1 � 0[ Again\ the Green|s functions for Cases I and II
are in agreement with Mindlin|s and Kelvin|s solution\ respectively[ Consistent with the symmetry
of the problem\ all Green|s functions for the homogeneous full!space con_guration "Case II# are
symmetric with respect to the plane x2 � s[ As anticipated\ e}ects of the neighboring medium on
the stress distribution in either half!space are most pronounced close to the material interface[

Apart from its intrinsic interest as the solution of the static problem\ the solution presented\
because of its dual format\ is also of critical importance in dealing with the more complicated
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Fig[ 09[ Stress Green|s functions S
0
20"x ^ s#[

Fig[ 00[ Stress Green|s functions S
0
01"x ^ s#[

dynamic problem[ In the context of the corresponding dynamic point!load bi!material Green|s
functions for instance\ their analytical derivations can\ to!date\ only be achieved in an integral
format similar to those in "21#Ð"23# due to the complexity of the integrands[ The situation is
further aggravated by the expected singular behavior of some of the Green|s functions when the
source approaches the receiver[ To deal with such problems\ it is useful to employ the method of
asymptotic decomposition "Pak\ 0876# wherein the leading asymptotic expansions of the featured
integrals "responsible for singular behavior# are extracted and integrated analytically so that the
remaining parts with strong decay can be evaluated numerically[ Mathematically\ one may write
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u¼�i � ðu¼�i Ł0¦ðu¼�i Ł1\

t¼�ij � ðt¼�ijŁ0¦ðt¼�ijŁ1\ "41#

where the subscripts {{0|| and {{1|| denote the analytically! and numerically!evaluated parts of the
fundamental solutions\ respectively[ For example\ the time!harmonic Green|s function
u¼�z"r\ u\ z ^ s ^ v# at frequency v for a two!phase material can be decomposed as

ðu¼�z"r\ u\ z^ s ^ v#Ł0 �
0

1pm1 6Fv g
�

9

"Va
1#jJ9"rj# dj¦Fh cos"u−u9# g

�

9

"Va
0#jJ0"rj# dj7\

ðu¼�z"r\ u\ z ^ s ^ v#Ł1 �
0

1pm1 6Fv g
�

9

"Vd
1−Va

1#jJ9"rj# dj

¦Fh cos"u−u9# g
�

9

"Vd
0−Va

0#jJ0"rj# dj7 "42#

where Vd
k "k � 0\ 1# denote the dynamic counterparts of the auxiliary functions Vk in "08# and "11#\

and

Va
0"j\ z ^ s# � Asym

z:�
"Vd

0"j\ z ^ s ^ v##\

Va
1"j\ z ^ s# � Asym

z:�
"Vd

1"j\ z ^ s ^ v##\ "43#

are their leading asymptotic expansions as z : �[ Here it can be shown that the asymptotic
expansions Va

0\ Va
1\ [ [ [ \ ga

2 for a two!phase material\ which are independent of frequency\ are
identical to the static auxiliary functions V0\ V1\ [ [ [ \ g2 in "08# and "11#[ It was also shown in
Guzina "0885# that the same asymptotic expressions are also valid in the case of dynamic Green|s
functions for a multi!layered half!space when the source point is near the interface of two layers
with elastic properties given by mu � m0\ nu � n0 for the upper stratum\ and ml � m1\ nl � n1 for the
lower stratum[

To highlight how the static bi!material point!load solution is crucial to the treatment of the
corresponding dynamic problems via the method of asymptotic decomposition\ a comparison of
the dynamic Green|s function U
2

2"x\ s ^ v# for a two!phase material "Guzina\ 0885# with the static
solution U
2

2"x\ s# is shown in Fig[ 01[ The material properties of the bi!material full!space are given
by

m0:m1 � 2\ r0:r1 � 2\ n0 � 9[29\ n1 � 9[19\ "44#

and the dimensionless frequency of excitation is

v¹ �
vs

zm1:r1

� 3[9[ "45#

While the in_nites in Fig[ 01"a# cannot be directly plotted\ one can see from Fig[ 01"b# that the
di}erence between the two solutions\ i[e[
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Fig[ 01[ Dynamic Green|s function U
2
2"x ^ s ^ v# and its regular part[

ðU
2
2"x\ s ^ v#Ł1 � U
2

2"x\ s ^ v#−ðU
2
2"x\ s ^ v#Ł0 0 U
2

2"x\ s ^ v#−U
2
2"x\ s#\ "46#

is _nite\ with no singular condition anywhere[

7[ Summary

In this paper\ the static response of a bi!material elastic full!space due to point loads is derived
by means of integral transforms and the method of displacement potentials[ The solution is
presented in the form of integral representations as well as in closed form\ both of which are
essential for the boundary element formulations and the accurate evaluation of certain ela!
stodynamic Green|s functions via the method of asymptotic decomposition[ With appropriate
material parameters\ the bi!material solution is shown to degenerate to the solution for a uniform
half!space and Kelvin|s state for a homogeneous full!space[ As illustrations\ a set of numerical
results is also presented which indicates that the e}ects of the neighboring medium on the defor!
mation and the stress distribution in either half!space are most pronounced close to the material
interface[ As a _nal example\ the usefulness of the dual!format static solution in the singularity
extraction of the corresponding elastodynamic Green|s function is demonstrated[
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